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Abstract

Implementing an extension of a legacy operating sys-
tem requires knowing what functionalities the exten-
sion should provide and how the extension should be
integrated with the legacy code. To resolve the first
problem, we propose that the use of a component
model can make explicit the interface between an ex-
tension and legacy code. To resolve the second prob-
lem, we propose to augment interface specifications
with rewrite rules that integrate support for exten-
sions in the legacy code. We illustrate our approach
using extensions that add new scheduling policies to
Linux and prefetching to the Squid Web cache. In
both cases a small number of rules are sufficient to
describe modifications that apply across the imple-
mentation of a large legacy system.

1 Introduction

Component models have been shown to be useful in
building specialized operating systems (OSes), such
as those dedicated to network routers [5], appliances
[11], or the support of advanced programming lan-
guages [6]. Component-based systems include OSKit
[6], Pebble [7], Think [5], Windows CE, and Windows
XP Embedded. The use of a component model pro-
vides modularity, making it easy to add and remove
functionalities, and allows automatic verification of
component composition.

Previous component-based approaches have fo-
cused on creating a new OS from a set of existing
components. We consider instead the use of compo-
nents in enabling the extension of legacy OSes. In this
setting, the OS amounts to a single component that
exports an extension interface. Extensions are also

encapsulated as components. This approach brings
the aforementioned benefits of the use of a compo-
nent model to the problem of OS extension. Never-
theless, there remains the issue of converting a legacy
OS into such a component.

The OSKit has pioneered the idea of using legacy
OS code to construct OS components. Implemen-
tations of system services, such as drivers and file
systems, are borrowed from Linux and BSD. OSKit
interfaces are constructed around this legacy code us-
ing wrappers that rename entry points, rearrange ar-
guments and perform similar glue behaviors. This
approach is sufficient when the need for OS modu-
larity and the basic points of interaction are well-
established. Constructing a new extension interface
requires, however, not only wrapping existing entry
points so that they can be used by an extension, but
also modifying the legacy code so that it invokes the
extension at appropriate points in its execution. In-
terposing this new behavior requires fine-grained re-
engineering of the legacy code.

In this paper, we propose to augment the specifica-
tion of a component interface with rewrite rules that
describe how to integrate support for the interface
into legacy code. To allow interposing this support
within existing function definitions, the rewrite rules
use temporal logic to precisely describe rewriting sites
in terms of control-flow patterns [1, 9]. To facilitate
evolution to new versions of the legacy code, these
rewritings are performed using an automatic tool.
Once support for the component interface has been
constructed in the legacy code, the resulting com-
ponent and the extension components are assembled
according to the underlying component model to pro-
duce the final system.

We illustrate our approach in the context of pro-
cess scheduling and Web caching. In the context of



process scheduling, we use our approach to construct
an interface in Linux 2.4 to support the Bossa frame-
work for extending legacy OSes with new scheduling
policies [10]. The extension interface for Linux 2.4
imports 13 functions, exports 20 functions, and uses
23 rewrite rules. Rewriting sites occur all across the
kernel, requiring that the rewrite rules be applied to
source code files amounting to almost 100MB. In the
context of Web caching, we use our approach to con-
struct an interface in the Squid Web cache to support
extension of Squid with specialized prefetching poli-
cies. Such policies, e.g., directed to new protocols or
particular services, have been shown to significantly
improve Web cache performance [8]. The extension
interface for Squid imports 4 functions, exports 25
functions, and uses 4 rewrite rules. In previous work,
we have developed automated tools that perform the
legacy code modifications required for Bossa [1] and
for Squid prefetching policies [13]. Nevertheless, the
interfaces between the various components involved
in these systems were not clearly defined. In both
cases, expressing the extension interface explicitly in
a component model enforces a clean separation be-
tween the legacy system and the extensions, facili-
tates evolution to new versions, and makes explicit
both the resources that an extension must provide
and the resources that it can expect to re-use from
the legacy system.

The rest of this paper is organized as follows. Sec-
tion 2 presents our approach in more detail. Section
3 applies this approach to the problem of extending
Linux to support Bossa. Section 4 applies this ap-
proach to the problem of extending Squid to support
prefetching. Finally, Section 5 presents related work
and Section 6 concludes.

2 Extending Knit with Fine-
Grained Rewrite Rules

We have instantiated our approach as an extension
of the Knit component model [12]. Knit is targeted
toward the needs of systems code and has been used
in the context of the OSKit. We augment the in-
terfaces of the Knit component model with rewrite
rules that describe how to integrate support for an
extension interface in a legacy system. A Knit in-
terface is described as a unit, which lists the names
imported and exported by a component, as well as
optional dependency, initializer, and finalizer infor-
mation. The imported and exported objects are de-

fined using bundle types, which group related names.
In our approach, each name declared within a bundle
type is accompanied by a rewrite rule that describes
how to add support in the legacy code for importing
or exporting the named object.

The information contained in an extension inter-
face is determined by the kinds of interactions that
are needed between the extension and the legacy sys-
tem. The main purpose of such an interface is to
describe the entry points that should be provided by
an extension, and thus imported by the legacy sys-
tem. Extensions may, however, need some informa-
tion from the legacy system itself. Examples include
a means of accessing and affecting system state in-
formation and mechanisms provided by the legacy
system that the extension should use. Thus, the in-
terface should also describe the legacy-system entry
points that are available to extensions.

Supporting an extension interface in a legacy sys-
tem requires some modification of the legacy code.
Importing an extension requires at least adding invo-
cation of the extension entry points. When the exten-
sion replaces an existing functionality, then the exist-
ing implementation of this functionality must also be
removed. Legacy code may also need to be modified
to take into account the result of invoking the exten-
sion. Finally, exporting information from the legacy
system to an extension may require wrapping this in-
formation for external use. These modifications may
require low-level rewriting of the legacy code.

Figure 1 shows the language used to describe
rewrite rules. We explain the main features of this
language. Because we assume that only the legacy
system requires re-engineering, a rule is indicated to
apply either on importing the associated object to the
legacy system or on exporting the associated object
from the legacy system. A rule describes a modifica-
tion either to a function body (rewrite), possibly re-
stricted to a specific function, or to a function header
(rewrite hdr). A rule applying to a function body ei-
ther replaces (->) code matching a pattern, or inserts
code before (-B>) or after (-A>) the code matching
a pattern. In the case of replacement, the keyword
ALL indicates that all code matching the pattern is
affected by the rule at once; in other cases, each con-
struct matching the pattern is treated individually.
The right-hand side of a rule (modification) indicates
the code to be inserted by the rewrite rule. A rule
applying to a function header can change the name
of the function or its parameter list.

Patterns are described using formulas of a variant



start ::= import: rule∗ | export: rule∗

rule ::= in fn name : rewrite | rewrite | rewrite hdr
rewrite ::= ALL(pattern) -> modification |

pattern -> modification |
pattern -B> modification |
pattern -A> modification

pattern ::= local pattern | path pattern
local pattern ::= TEST(local pattern) | fn name(args) | C-code

pattern & pattern | pattern | pattern |
!pattern | pattern => pattern

path pattern ::= EX(pattern) | AX(pattern) | EF(pattern) |
AF(pattern) | EG(pattern) | AG(pattern) |
E(pattern U pattern) | A(pattern U pattern) |
EX-back(pattern) | AX-back(pattern) |
EF-back(pattern) | AF-back(pattern) |
EG-back(pattern) | AG-back(pattern) |
E-back(pattern U pattern) |
A-back(pattern U pattern)

modification ::= fn name(arg,. . . ,arg) | C-code
arg ::= args | ID | C-expression
rewrite hdr ::= fn name(params) -> fn name(decl, . . . , decl)
decl ::= params | C-declaration

Figure 1: The rewrite rule language

of the temporal logic CTL [9], allowing the descrip-
tion of complex, context-sensitive properties. A pat-
tern is either a local pattern or a path pattern. A
local pattern describes properties of a single C state-
ment or expression. The keyword TEST indicates a
pattern that is restricted to conditional test expres-
sions. The keyword args in a function call pattern
matches any set of arguments. A local pattern can
combine other patterns using e.g., the standard con-
junction and disjunction operators. Path patterns
use the path operators of temporal logic to describe
properties of the paths leading to the matched con-
struct in a control-flow graph. Two variants of each
operator are provided. Operators not containing the
string back describe paths beginning at the matched
construct, while the operators containing the string
back describe paths ending at the matched construct.
These operators allow describing a statement in terms
of its relationship to other statements.

The rewriting engine not only applies the rules but
also gives an error when the patterns described by
the rules are not found. This feedback makes the ap-
proach resilient to minor differences between related
versions of the legacy code.

3 A Linux Scheduling Interface

Our first example is a component-based implementa-
tion of the Bossa scheduling framework in Linux 2.4.
Bossa allows the extension of a legacy OS with a hi-
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Figure 2: Bossa component structure

bundletype RTS_to_kernel =

{ rts_clocktick // event notification

{import: in update_times:

calc_load(args) -A> rts_clocktick()},

rts_schedule

{import: in schedule:

ALL(AF-back(spin_lock_irq(&runqueue_lock)) &

AF(spin_unlock_irq(&runqueue_lock))) ->

... rts_schedule(caller) ...

schedule() -> bossa_schedule(ID)

schedule(void) -> bossa_schedule(int caller)},

...

rts_blocked // scheduler status

{import: in cpu_idle:

TEST(!current->need_resched) -> rts_blocked()}}

bundletype Kernel_to_bossa =

{ errno, kfree, kmalloc, sprintf, printk, ... }

bundletype Kernel_to_RTS =

{ add_timer, del_timer, mod_timer, jiffies, ... }

bundletype Kernel_to_policy = { panic, pidhash }

bundletype Kernel_entry_points = { .... }

unit Kernel = {

imports [ rts_to_kernel: RTS_to_kernel ];

exports [ kernel_to_bossa: Kernel_to_bossa,

kernel_to_rts: Kernel_to_RTS,

main: Kernel_entry_points ];

depends { };

files { ... }; }

Figure 3: Excerpts of the Bossa interface

erarchy of scheduling policies. As shown in Figure
2, the implementation is structured using three kinds
of components: an OS kernel component, a run-time
system (RTS) component, and a component for each
scheduling policy (only one policy is shown in the
figure). The RTS manages the interaction between
the kernel, which is fixed, and the policies, which are
loaded dynamically. This structure increases the flex-
ibility of the extension framework, allowing the use



of an RTS component that addresses special needs,
such as safety checks that depend on the level of trust
in the policies. The RTS and the policies are con-
structed for use with the Bossa framework, and thus
implement the appropriate interfaces. We concen-
trate on the interface of the kernel component, as
this component is made from legacy code. Excerpts
of this interface are shown in Figure 3.

In the Bossa framework, the extension behavior
is represented as a set of functions exported by the
RTS to the kernel. These functions, listed in the
RTS to kernel bundletype, allow the kernel to signal
relevant state changes (e.g., the blocking of a process)
to the policies and to request the election of a process.
In some cases, the Bossa behavior is orthogonal to the
existing Linux behavior, and invocation of the corre-
sponding RTS function must simply be added at the
point where the associated state change has occurred.
An example is rts clocktick, which notifies Bossa
of the passage of time. The corresponding rewrite
rule adds invocation of this function to the function
update times of Linux, which itself is invoked on ex-
piration of the Linux periodic timer. In other cases,
the Bossa behavior must replace the existing Linux
behavior. An example is rts schedule, which imple-
ments process election. Linux process election is im-
plemented as a part of the function schedule, which
also performs the context switch. The rewrite rule
associated with rts schedule replaces the fragment
of schedule between the initial obtaining and the fi-
nal releasing of the runqueue lock, which contains the
legacy process election code.

In addition to importing functions from the RTS,
the kernel must also export to the RTS and the poli-
cies functions implementing a number of mechanisms,
listed in the bundletype Kernel to bossa. These
include generic mechanisms such as locks, memory
allocation, file manipulation, as well as scheduling-
specific mechanisms such as access to the Linux repre-
sentation of the current process. Kernel mechanisms
used only by the RTS are exported via the bundletype
Kernel to RTS and kernel mechanisms used only by
the policies are exported via the bundletype Ker-
nel to policy. Finally, to allow an encapsulated
kernel to interact with the boot loader, the kernel
also exports a set of entry points (bundle type Ker-
nel entry points).

The complete kernel interface for Linux uses 23
rewrite rules. Based on this interface, we have imple-
mented a variety of scheduling policies, including the
scheduling policy of Linux, Earliest-Deadline First,
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Figure 4: Squid prefetching component structure

bundletype VAR_IO_URL = { wrappedUrlParse, ... }

bundletype PREFETCH = { retrieveLinks, ... }

bundletype IO = { printf, puts ... }

bundletype Entry_point = { ... }

unit Squid = {

imports [ prefetch: PREFETCH, io: IO ];

exports [ var: VAR_IO_URL, main: Entry_point ];

depends { };

files { ... };

}

unit Prefetch = {

imports [ var: VAR_IO_URL ];

exports [ prefetch: PREFETCH ];

depends { exports needs imports };

files { prefetchingModule.c };

}

Figure 5: Squid prefetching interface

and Borrowed Virtual Time (BVT) scheduling [4].1

We have constructed interfaces for Linux 2.4.18 and
Linux 2.4.24. In general, the same rewrite rules can
be used for both systems. The main change from
Linux 2.4.18 to Linux 2.4.24 that is relevant to Bossa
is the introduction of a yield() function that al-
lows kernel functions to use the functionality of the
yield system call. This structure implies that a code
pattern indicating a state change relevant to Bossa
crosses function boundaries, which is not supported
by the rewrite rule patterns. In this case, an error
rule indicates an incomplete match of an expected
pattern, isolating for the user the part of the kernel
code that must be considered by hand.

4 A Squid prefetching interface

Our second example is a component-based framework
for extending Squid with prefetching policies. As il-
lustrated in Figure 4, the framework uses two kinds
of components: Squid itself, and components for the
prefetching extensions (only one extension is shown in

1http://www.emn.fr/x-info/bossa/



the figure). Squid should invoke the extensions when
certain runtime events related to page loading occur.
An extension selects the pages to be prefetched, e.g.,
by parsing the current page and identifying relevant
links, and adds these pages to the Web cache. Ex-
cerpts of the extension interface are shown in Figure
5. The interface consists of two units, Squid and
Prefetch, describing the functions imported and ex-
ported by Squid and the prefetching extension, re-
spectively.

The main function exported by a prefetching ex-
tension is retrieveLinks, which analyzes Web pages
in order to decide which pages to prefetch. Squid
must be modified to invoke this function whenever it
retrieves a page in response to a client request, and
thus this function is part of the PREFETCH bundletype
imported by the Squid unit. The rewrite rule asso-
ciated with retrieveLinks modifies the Squid func-
tion comm write to invoke the extension. The func-
tion comm write, however, is used in response to all
kinds of requests, including those from the extension
itself. To avoid infinite looping, the rewrite rule asso-
ciated with retrieveLinks also modifies the callers
of comm write to indicate the context from which
comm write is called. This added information enables
comm write to only invoke the extension when it is
called from a client request.

A prefetching extension only decides when and
what to prefetch; to actually retrieve and store the
chosen pages, it uses the mechanisms of Squid. These
mechanisms are exported by the Squid unit via the
VAR IO URL bundletype. In many cases, the Squid
functions take as an argument a data structure of
which only some fields are relevant when the function
is invoked from an extension. Thus, rewrite rules are
used to create wrapped versions of these functions in
Squid. In all, 25 Squid functions are exported to the
prefetching extension.

The complete interface uses 4 instrumentation
rules that are applied at about 40 call sites, scat-
tered across 1000 lines of source code. We have used
this interface to extend Squid with the prefetching
strategy, “top 10 prefetching” [2].

5 Related Work

OSKit also uses componentized versions of legacy OS
code [6]. The goals, and thus the components in-
volved, are different, however. In OSKit, the goal is
to enable the construction of various fixed OSes from
a set of building blocks implementing basic OS func-

tionalities. Thus, individual OS services, such as file
systems, device drivers, etc., are provided as compo-
nents. Our goal is to enable extension, i.e. a form
of external interaction, of an existing OS. Thus, the
complete OS forms a component, modified to enable
new interactions.

Aspect-oriented programming (AOP) is a program
design technique in which a functionality that cross-
cuts an application is isolated in a module, known
as an aspect. An aspect contains both code frag-
ments that implement the functionality and a formal
description of how these code fragments should be
integrated into the application. Our augmented in-
terface specifications amount to aspects dedicated to
the construction of a component interface in legacy
code. AOP has also been used by Coady to describe
OS evolution [3].

6 Conclusion

In this paper, we have considered the problem of pro-
viding support for the extension of legacy systems.
We propose that extension be based on an interface
that makes explicit the resources that an extension
provides and the resources that it reuses from the
legacy system. To allow extension that is not antici-
pated by the legacy code, we propose to augment the
declarations in such an interface with rewrite rules
that describe how to modify the legacy system to sup-
port the extension interface. Finally, we propose the
use of tool support to carry out these modifications
automatically.

Our approach enables reuse and evolution of an
extended system. The contents of the interface can
guide the development of multiple extensions, by
making explicit the set of entry points that are needed
for a complete implementation. The rewrite rules and
automated tool support ensure that the difficult task
of re-engineering the legacy code to support exten-
sion does not have to be repeated for each extension
that is to be implemented. The tool support addi-
tionally facilitates evolution of existing extensions to
new versions of the legacy system.

In our experiments, we have used Knit, which only
supports static component composition. In the con-
text of a long-running system such as an OS, it can
be useful to load extensions dynamically, to adjust
to changing needs. The introduction of rewrite rules
should be straightforwardly applicable to other com-
ponent models, such as Think, that are directed to
dynamic composition [5]. While legacy code can be



prepared statically for subsequent dynamic compo-
nent composition, it could also be useful to modify
the legacy code dynamically, e.g., when an extension
is first loaded. We plan to investigate the use of our
dynamic rewriting tool µ-Dyner [13] in this context.
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