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2 OBASCO Group, École des Mines de Nantes-INRIA, LINA, France
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Abstract. Domain-specific languages (DSLs) have been proposed as a
solution to ease the development of programs within a program family.
Sometimes, however, experience with the use of a DSL reveals the pres-
ence of subfamilies within the family targeted by the language. We are
then faced with the question of how to capture these subfamilies in DSL
abstractions. A solution should retain features of the original DSL to
leverage existing expertise and support tools.
The Bossa DSL is a language targeted towards the development of ker-
nel process scheduling policies. We have encountered the issue of pro-
gram subfamilies in using this language to implement an encyclopedic,
multi-OS library of scheduling policies. In this paper, we propose that
introducing certain kinds of modularity into the language can furnish
abstractions appropriate for implementing scheduling policy subfamilies.
We present the design of our modular language, Bossa Nova, and assess
the language quantitatively and qualitatively.

1 Introduction

Domain-specific languages (DSLs) have been proposed as a solution to ease the
development of programs within a program family. A DSL is designed according
to the results of a domain analysis, and provides high-level, domain-specific
abstractions that facilitate programming in the domain and enable verification
of domain-specific properties. Such languages have made programming accessible
to non-experts in areas as varied as web-services [1, 4, 31] and animation [10].

Despite the success of DSLs, such languages are limited by the scope of the
initial domain analysis. The ease of programming with a DSL may, however,
lead programmers in unanticipated directions. In particular, experience with a
DSL may reveal subfamilies within the family targeted by the language. We
must then consider how to extend the DSL to provide appropriate abstractions
for capturing these subfamilies. A solution should maintain the character of the
DSL, to leverage the expertise and support tools developed around the language.

One approach that can enable a DSL to adapt to unanticipated needs is to
embed the language in an existing richer general-purpose language [10, 14, 29].
The DSL can then inherit host-language features such as types, modules, and
objects as the need arises. The inherited features, however, are determined by



what the host language provides, and not by domain needs. Accordingly, code can
be difficult to understand, because information is not structured according to its
role in the domain, and difficult to verify, because the general-purpose nature of
the inherited features precludes introducing constraints to ease verification. We
propose instead that DSL extensions should be individually designed according
to domain requirements and in harmony with existing abstractions of the DSL.
The language can then be embedded or directly compiled, as convenient. We
illustrate our proposal in the context of the Bossa DSL for process scheduling
[19, 20], which we extend with two forms of modularity.

The Bossa DSL. A process scheduler is the part of an operating system (OS)
kernel that allocates the CPU to processes. Because the time at which a process
gets access to the CPU affects the timing of all its subsequent actions, process
scheduling has a profound effect on application behavior. From real-time systems
to multimedia applications to energy-restricted embedded systems and beyond,
applications have varied scheduling needs that cannot be met by a single sched-
uler. Not surprisingly, many scheduling policies have been proposed [2, 6, 9, 15,
24, 25, 28, 30, 33–35]. Still, few of these scheduling policies are available in com-
monly used OSes. Furthermore, implementing a scheduling policy in a legacy
OS kernel is outside the expertise of most application developers.

To ease the implementation of scheduling policies in legacy OSes, we have
developed the Bossa framework. Bossa extends a legacy OS with a documented
scheduling interface [19] and provides a DSL for implementing scheduling poli-
cies [20]. It has been used to implement a variety of scheduling policies, including
those for interactive, multimedia, and real-time applications. We have observed
significant benefits in the understandability, conciseness, and safety of Bossa
schedulers, as compared to direct coding at the OS level. These features have
enabled undergraduate students with no previous kernel programming experi-
ence to implement schedulers in the Linux kernel without crashing the machine.

The Bossa DSL was designed to facilitate the implementation of one schedul-
ing policy at a time. The ease of scheduler programming in Bossa, however, has
lead us to begin implementing an encyclopedic multi-OS library of scheduling
policies. This work has highlighted some properties of scheduling policies that
were not taken into account in the original design of the language. We have
observed that the policies found in the scheduling literature are often classified
in families, and that the Bossa implementations of policies within a family have
much in common. Furthermore, the code specific to a policy variant is intertwined
with the code generic to the family, making it difficult to identify policy-specific
features. These issues have called for the introduction of modularity in the Bossa
DSL, to enable the separation of concerns and to enhance code reuse.

This paper. In this paper, we address the needs identified in implementing an
encyclopedic multi-OS library of scheduling policies by extending the Bossa DSL
with two forms of modularity: modules and transition aspects. Modules separate
scheduling concerns while transition aspects permit a module to adapt other
modules in a controlled way. The extensions are designed according to a careful



analysis of the requirements of the scheduling domain. We assess the exten-
sions on the implementation of a variety of scheduling policies. As compared
to an embedded-language approach where the DSL inherits features from the
host language, we find that our approach leads to policies that are more un-
derstandable, because information is structured according to the needs of the
domain, and more verifiable, because we can constrain the module system in a
way that eases verification. The resulting language, Bossa Nova, has been im-
plemented by translation into the Bossa DSL, for which an implementation has
previously been developed [19, 20]. Experiments with Bossa Nova have shown no
performance overhead as compared to Bossa.

This work represents a case study in what happens when a DSL meets real
programming needs. Specifically, we illustrate:

– Motivations for introducing new abstractions into a DSL.
– Goals that should be taken into account in designing these abstractions.
– The choice of specific features that the abstractions should provide to meet

these goals.

While the design choices presented here are specific to Bossa, our contributions
are to identify individual motivations, goals, and features that should be taken
into account in extending DSLs and to illustrate the benefits that can be achieved
by this approach.

The rest of this paper is structured as follows. Section 2 presents the Bossa
DSL. Section 3 motivates the need for modularity, and presents our design
choices. Section 4 assesses the resulting language, Bossa Nova, on numerous ex-
amples and compares the proposed forms of modularity to existing approaches.
Finally, Section 5 describes related work and Section 6 concludes.

2 Bossa in a Nutshell

We introduce the Bossa DSL using excerpts of an implementation of an Earliest-
Deadline First (EDF) scheduling policy [7, 22], shown in Figure 1. This policy
manages a set of periodic processes, each of which is associated with a deadline
within its current period. Process election chooses the process with the nearest
deadline. The complete policy and a grammar of the Bossa DSL are available at
the Bossa web site, http://www.emn.fr/x-info/bossa. We focus on the main
features of the language: declarations and event handlers.

Declarations. The declarations of a scheduling policy define the process at-
tributes, process states, and processes ordering used by the policy.

The process declaration (Figure 1, lines 2-3) lists the policy-specific at-
tributes associated with each process. For the EDF policy, these are the period
and the Worst-Case Execution Time (WCET) supplied by the process, a timer
that is used to maintain the period, the offset of the deadline within each period,
and the process’s absolute deadline within the current period.



scheduler EDF = { 1

process = { time period; time wcet; timer period timer; 2

time deadline; time absolute deadline; } 3

states = { RUNNING running : process; READY ready : select queue; 4

READY yield : process; BLOCKED blocked : queue; 5

BLOCKED period yield : queue; TERMINATED terminated; } 6

ordering criteria = { lowest absolute deadline } 7

handler (event e) { 8

On block.* { e.target => blocked; } 9

On bossa.schedule { 10

if (empty(ready)) { yield => ready; } 11

select() => running; 12

if (!empty(yield)) { yield => ready; } 13

} 14

On unblock.timer.period timer { 15

e.target.absolute deadline = now() + e.target.deadline; 16

start relative timer(e.target.period timer, e.target.period); 17

switch e.target in { 18

case period yield: { 19

e.target => ready; 20

if (!empty(running) && (e.target > running)) { running => ready; } 21

} 22

case running, ready: { e.target => ready; } 23

case READY, BLOCKED, TERMINATED: { } 24

} 25

} 26

. . . 27

} 28

} 29

Fig. 1. An excerpt of the EDF scheduling policy

The states declaration (lines 4-6) lists the set of process states that are
distinguished by the policy. Each state is associated with a state class (RUNNING,
READY, BLOCKED, or TERMINATED) describing the schedulability of processes in
the state. For example, the ready state is in the READY state class, meaning
that it contains processes that are ready to run. A state is also associated with
an implementation as either a process variable (process) or a queue (queue).
Finally, the ready state is designated as select, indicating that processes are
elected from this state.

The ordering criteria (line 7) describes how to compare two processes in
terms of a sequence of criteria based on the values of their attributes. Higher or
lower values are favored using the keywords highest and lowest, respectively.
The EDF policy favors the process with the lowest absolute deadline.

Event handlers. Event handlers describe how a policy reacts to scheduling-
related events that occur in the kernel. Examples of such events include process
blocking and unblocking and the need to elect a new process.



The EDF policy defines 11 event handlers. Handlers are parameterized by
an event structure, e, that includes the target process, e.target, affected by the
event, if there is one. The event-handler syntax is based on that of a subset of
C, to make the language easy to learn. The syntax provides specific constructs
and primitives for manipulating processes and their attributes. These include
constructs for testing the state of a process (exp in state), testing whether there
is any process in a given state (empty(state)), testing the relative priority of two
processes (exp1 > exp2), and changing the state of a process (exp => state).

A block.* event occurs when a process blocks. The associated handler of
the EDF scheduling policy (line 9) simply sets the state of the target process to
blocked. A bossa.schedule event occurs when the kernel would like the policy
to elect a new process. The associated handler (lines 10-14) uses the primitive
select() to choose the highest priority process according to the ordering criteria
from the state designated as select, i.e., ready. It also manages any yielded
process. Finally, an unblock.timer.period timer event occurs when a process’s
period timer timer expires, indicating the start of a new process period. The
associated handler (lines 15-26) resets the absolute deadline of the target process
(line 16), restarts the timer (line 17), and reschedules the target process for its
computation in the new period (lines 18-25). If the process is in the period -
yield state, meaning that it has completed its computation during its previous
period, then its state is changed to ready, indicating that it is newly able to run
(line 20). If the target process is in the running state or the ready state, then
it is repositioned in the ready queue according to its new priority (line 23).

3 Modularity for Bossa

In the Bossa DSL presented above, a scheduling policy is implemented as a single
unit, defining a complete set of event handlers. In our experience in developing
a library of scheduling policies, we have observed that when scheduling policies
are part of the same family, there is much commonality between their implemen-
tations. We first illustrate this commonality in the case of policies for managing
periodic processes, such as EDF, and argue that this commonality motivates the
need for modularity. We then propose a module system tailored to the needs of
scheduling policies, which forms the basis of a modular variant of the Bossa DSL,
named Bossa Nova. Finally, we briefly describe a second form of modularity, a
variant of aspects, that we have also found useful in Bossa Nova.

3.1 The need for modules

Many scheduling policies have been developed for managing periodic processes,
including Deadline Monotonic (DM) [7], Earliest-Deadline First (EDF) [7], Fixed
Utilization Priority (FUP) [13], Least Compute Time (LCT) [13], Least-Laxity
First (LLF) [7], Rate Monotonic (RM) [7], and Shortest Completion Time (SCT)
[13]. The set of periodic policies thus amounts to a program subfamily. In imple-
menting these policies in Bossa, we have observed that only the ordering criteria
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Fig. 2. Modular decomposition of a subset of the family of periodic policies (modules
are boxed, policies are unboxed)

and the code calculating the values used in this criteria differ among them. In-
deed, among these policies, the average size of the Bossa implementation is 123
lines, of which 100 are common to all of the policies.

One strategy in the face of this large amount of common code is to implement
a scheduling policy by copying code from the Bossa implementation of another
policy in the same subfamily. Nevertheless, we find that code that is common
to the subfamily is mixed with code that is specific to a given policy, requiring
careful rewriting of the copied code. This issue suggests the need for a modular
programming strategy that separates these concerns, leading to a collection of
standard modules that are useful in implementing policies of a given subfamily.
Such a modular decomposition of the periodic policies is illustrated in Figure 2.

3.2 Modules for process scheduling

The design of our module system is guided by the requirements of the scheduling
domain. As a scheduling policy is a critical component of an OS, its implemen-
tation must be understandable and verifiable. Our experience in implementing a
library of scheduling policies has further shown the need for code reuse. Accord-
ingly, we structure the module system according to the following principles. To
enhance understandability, the module system organizes a scheduling policy as
a centralized scheduler, giving a global view of the policy behavior, and a collec-
tion of modules, each implementing a single scheduling functionality. To enhance
verifiability, the module system provides fine-grained control over external ac-
cess to module elements, making it clear where it is valid to reason in terms of
properties local to a module. Finally, to enhance reusability, modules do not re-
fer directly to the other modules making up a given policy. Instead, information
about the relationships between modules is localized in the scheduler.

In the rest of this section, we describe how the requirements of understand-
ability, verifiability, and reusability influence the design of the interaction be-
tween the module system and the main features of Bossa: process states, process
attributes, and event handlers. In each case, the various constraints identified



scheduler EDFSched = { 1

states = { RUNNING running : process; READY ready : select queue; 2

READY yield : process; BLOCKED period yield : queue; 3

BLOCKED blocked : queue; TERMINATED terminated; } 4

modules { EDF(), 5

AbsoluteDeadline(), 6

Timer (running, ready, period yield), 7

Common (running, ready, yield, blocked, terminated) } 8

process { EDF.period reads Timer.period, 9

EDF.wcet reads Timer.wcet, 10

EDF.absolute deadline reads AbsoluteDeadline.absolute deadline, 11

AbsoluteDeadline.period timer reads Timer.period timer } 12

ordering criteria { EDF } 13

handler { unblock.timer.period timer : AbsoluteDeadline, Timer; } 14

} 15

Fig. 3. The scheduler used in the Bossa Nova implementation of the EDF policy

are checked by the Bossa Nova compiler. We use the Bossa Nova implementation
of the EDF scheduling policy shown in Figures 3 and 4 as an example.

Process states. A main activity of a scheduling policy is to adjust process states,
taking into account both OS requirements and the strategy of the policy. Thus,
the set of process states manipulated by a policy gives a sense of the scope of the
policy’s scheduling strategies. To provide a global view of the policy, we define
the states centrally in the scheduler, as shown in lines 2-4 of Figure 3. States are
then passed to the modules as needed, as shown in lines 5-8 of Figure 3.

A module may only explicitly refer to the states among its parameters. A
state change operation exp => state, however, implicitly references the current
state of the process exp. We allow this state to be any state defined by the
scheduler. This strategy implies that the module does not have to be aware of the
complete set of states defined by the policy, and thus facilitates code reuse, but
limits the ability to reason about state contents across the handlers of a module.
When a module needs to be sure that only it can affect the set of processes in
a given state, it can annotate the associated parameter as unshared. Such a
parameter must be instantiated by the scheduler to a state that is not passed to
any other module and no other module can remove processes from the state. An
example of such a parameter is period yield (Figure 4, line 16), in which the
Timer module stores processes that have completed their computation within
a given period. The state used by the scheduler to instantiate this parameter
(Figure 3, line 7) is only passed to this module. A global analysis of the scheduling
policy shows that no other module removes processes from this state.

Process attributes. Process attributes record process information that persists
across successive events. Because this information is typically specific to a sin-



module EDF() { 1

process = { requires time period; requires time wcet; 2

requires time absolute deadline; } 3

ordering criteria = { lowest absolute deadline } 4

} 5

module AbsoluteDeadline() { 6

process = { time deadline; time absolute deadline; requires timer period timer; } 7

handler (event e) { 8

On unblock.timer.period timer { 9

e.target.absolute deadline = now() + e.target.deadline; 10

next(); 11

} 12

} 13

} 14

module Timer(RUNNING process running, READY select queue ready, 15

BLOCKED unshared queue period yield) { 16

process = { time period; time wcet; timer period timer; } 17

handler (event e) { 18

. . . 19

On unblock.timer.period timer { 20

start relative timer(e.target.period timer, e.target.period); 21

switch e.target in { 22

case period yield: { 23

e.target => ready; 24

if (!empty(running) && e.target > running) { running => ready; } 25

} 26

case running, ready: { e.target => ready; } 27

case READY, BLOCKED, TERMINATED: { } 28

} 29

} 30

} 31

} 32

module Common(. . .) { . . . } 33

Fig. 4. The modules used in the Bossa Nova implementation of the EDF policy

gle scheduling functionality, process attributes are declared locally to the mod-
ule defining the functionality. To facilitate communication between modules, all
process attributes are implicitly exported for read access. To enable reasoning
about the behavior of a module across its various handlers, however, write access
is only allowed in the defining module. Finally, to enhance reusability, a module
imports an attribute without mentioning the name of the defining module, by
simply annotating the attribute declaration with requires. The link between
exported and imported attributes is made in the scheduler.

As shown in lines 2-3 of Figure 1, the Bossa implementation of the EDF
policy declares five attributes, relating to the management of the process pe-
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Fig. 5. Composition of handlers in the EDF scheduling policy

riod (period, wcet, and period timer) and the process deadline (deadline
and absolute deadline). In the Bossa Nova implementation (Figure 4), the
former are localized in the Timer module and the latter are localized in the
AbsoluteDeadline module. The EDF module imports the period, wcet, and
absolute deadline attributes, which it declares using requires, as shown in
lines 2-3 of Figure 4. These attributes are instantiated in the process declaration
of the scheduler (Figure 3, lines 9-11), which declares that the EDF period and
wcet attributes read the corresponding attributes of the Timer module and the
EDF absolute deadline attribute reads that of the AbsoluteDeadline module.

Event handlers. Event handlers react to OS events. Because multiple scheduling
functionalities may need to react to the same event, multiple modules may define
a handler for a given event. In this case, the scheduler lists the names of the
modules defining a given handler in the order in which the definitions are to be
composed. Execution begins with the handler defined by the first module in the
list. A handler uses next() to invoke the next handler in the composition.

Figure 5 illustrates the composition of some of the handlers in the EDF
policy. Both the Timer module and the AbsoluteDeadline module define an un-
block.timer.period timer handler. That of the Timer module (Figure 4, lines
20-30) represents a complete implementation of a minimal handling of the event:
it restarts the timer and reschedules the target process. This handler is thus
at the end of any composition sequence. The handler of the AbsoluteDeadline
module (Figure 4, lines 9-12) extends this behavior by updating the locally
defined absolute deadline attribute and then invoking the next handler.

There are some constraints on the use of next() to ensure the integrity of the
individual modules and of the composition. A handler typically updates process
attributes and changes process states. When these operations are essential to
the implemented scheduling functionality and are not idempotent, it is essential
that the handler be invoked exactly once. To meet this requirement, a handler
that appears before the end of a composition sequence must use next() exactly
once along every control-flow path. In exceptional cases, a module may simply



provide a default definition for a handler, but not require that this definition
be used. Such a handler can be declared to be overrideable. If all subsequent
handlers in a composition are declared as overrideable, then next() may be
omitted along some or all control-flow paths. Finally, handlers used at the end
of a composition sequence may not invoke next(). This constraint ensures that
the module writer intended the handler to be used in this position.

3.3 Aspects for process scheduling

Modules isolate the data and code associated with a given scheduling functional-
ity. We have found, however, that the data associated with a scheduling function-
ality may need to be updated in response to actions, such as state changes, that
take place in other modules. For example, the module ElapsedTime, used by sev-
eral periodic policies (see Figure 2), maintains the running time of each process.
Obtaining this value requires storing the current time whenever the process en-
ters the RUNNING state and recording the difference between the current time and
the stored time whenever the process leaves this state. Such state changes can
occur in any module. As it is not desirable to let other modules make arbitrary
side effects to the process attributes of ElapsedTime, the ElapsedTime module
itself must be able to adapt other modules with the appropriate computations.

The need to update an attribute value when executing a particular kind of
code elsewhere in the policy implementation amounts to a crosscutting concern.
Accordingly, we look to Aspect-Oriented Programming [18] for inspiration, and
add a form of aspects to Bossa Nova. We refer these aspects as transition aspects,
because they account for some kind of transition in the system. A transition
aspect implementing the behavior required by ElapsedTime on state transitions
is as follows, where the state class names refer to the associated sets of states:

transition(process p) = {
On READY => running { p.start time = now(); }
On running => READY, BLOCKED { p.elapsed time += now()−p.start time; }

}

Transition aspects are similar to aspects in languages such as AspectJ [17],
but are restricted to the updating of attributes in response to current conditions.
Accordingly, an aspect can only be attached to a state change or attribute refer-
ence, and cannot itself perform state changes. When multiple aspects apply to a
single construct, they are ordered such that an aspect that defines an attribute
appears before all aspects that reference the attribute; mutually recursive refer-
ences are rejected by the Bossa Nova compiler. This ordering ensures that each
attribute reference obtains an up-to-date value.

4 Evaluation

We now evaluate the forms of modularity provided by Bossa Nova. We first con-
sider the benefits of modularity in programming scheduling policies and then



Family Periodic Round Robin Proportion
Module Common Timer AbsoluteDeadline ElapsedTime RR Proportion
Lines of code 68 47 28 45 35 29

Policy-specific
module Scheduler Modular Monolithic

Periodic DM 23 22 160 109
(sharing illustrated in Figure 2) EDF 26 34 203 123

FUP 20 27 162 110
LCT 9 26 150 106
LLF 45 39 272 161
SCT 42 35 237 147
RM 9 26 150 106

Family total 503 862
Round Robin Basic round robin 15 28 146 96
(sharing Common and RR) Best [3] 74 30 207 158

Family total 182 254
Proportion Basic proportion 48 32 177 124
(sharing Common and Proportion) Move-to-rear [6] 41 29 167 123

Family total 179 247

Fig. 6. A comparison of the lines of code used in the modular and monolithic imple-
mentations of various scheduling policies. “Family total” is explained in the text.

compare the dedicated approach used in Bossa Nova to the approaches to mod-
ularity found in general-purpose languages.

4.1 Benefits of modularity in implementing scheduling policies

We evaluate Bossa Nova with respect to a selection of policies from our on-going
development of an encyclopedic, multi-OS library of scheduling policies. All of
these policies are available at the Bossa web site.

Code sharing. We use the families of periodic, round-robin, and proportional
scheduling policies to illustrate the effect of modularity on the amount of code
that must be written to implement a new policy in a given family. Figure 6 shows
the number of lines of code in the shared modules, and in a variety of scheduling
policies in these families. All the policies use modules; the SCT, LLF, and Best
policies also use transition aspects. In each case, the modular implementation
is around 50% larger than the monolithic implementation. This increase is due
to the introduction of the scheduler and the repetition of keywords (process,
handler, etc.) between modules. In general, the extra code is eliminated by the
Bossa Nova compiler, which generates a monolithic Bossa DSL implementation.

To amortize the cost of creating generic modules, they must be used by many
different policies. The “Family total” entry associated with each family in Figure
6 shows the total number of lines in the policy-specific modules and schedulers
added to the number of lines in one instance of each of the generic modules
used by the family. This value excludes the Common module, which we may
assume to be sufficiently widely used that its amortized cost is negligible. For
the periodic family, the total number of lines that must be implemented in the
modular case is 58% of the total number of lines required in the monolithic case.



For the round-robin and proportional families, the ratio is 72%, reflecting the
fact that fewer policies have been implemented in these families.

Separation of concerns. Even when a scheduling policy is not part of a fam-
ily, modularity can be useful to separate concerns. The Borrowed Virtual Time
policy provides scheduling for both real-time and interactive processes [9]. This
policy uses three main process attributes: the actual virtual time (AVT), the
effective virtual time (EVT), and the warp. These attributes depend on several
other process attributes, and the relevant calculations appear in multiple event
handlers, making the monolithic implementation long (almost 300 lines) and dif-
ficult to understand. In the Bossa Nova implementation, each of the AVT, EVT,
and warp is managed by a separate module. These modules highlight how the
attributes are computed and the relationships between them. For the AVT, a
twelve-line computation is required to compute the value whenever a process be-
comes newly able to run. This code is isolated in a transition aspect that delimits
the computation and makes explicit the conditions under which it applies.

Isolation of OS-specific behavior. Often the details of the interaction with the
target OS are orthogonal to the concerns of a given scheduling policy. In this case,
we can use a module to isolate OS-specific behavior, thus simplifying the policy
implementation and making it easy to use a scheduling policy with multiple
OSes. In the examples in this paper, the Common module encapsulates the
interaction with the OS (see Figure 2). We have implemented this module for
use with Linux 2.4. In this implementation, the treatment of unblocking and
yielding is specific to this OS, while other operations are generic.

4.2 Comparison to the approaches of general-purpose languages

We have designed module and aspect systems specific to the problem of imple-
menting scheduling policies, rather than reusing existing approaches. To justify
our choice, we compare our module and aspect systems to existing general-
purpose approaches, in terms of the understandability, verifiability, and reusabil-
ity of scheduling code.

Understandability. Key to the understandability of a Bossa Nova scheduling
policy is the scheduler, which gives an overview of the set of modules used by the
policy, the information that is defined by each module, and the information that
is shared between modules. Module systems that can provide such a global view
include Units [11] and a variant of CLOS mixins [5], in which a module either
defines new behaviors or describes how to combine the information provided by
other modules. Both of these approaches, however, allow a combining module
to be itself combined with other modules, and thus there may be no single unit
that gives a complete view of the program. Furthermore, in both approaches,
a combining module cannot declare data, as we require for the declaration of
process states. Other approaches, such those found in Object-Oriented languages
or ML [23], allow modular units to be created and used throughout the program



and thus provide no global view. While one could organize programs written in
such languages so that a single module creates the connections between all of
the other modules, there would be no guarantee that this style is respected.

Verifiability. The verifiability of a Bossa Nova scheduling policy is enhanced by
the constraints on access to process states, process attributes, and event han-
dlers, that make it possible to reason about module behavior across a sequence
of events. General-purpose module systems either forbid external access to mod-
ule information, e.g. using Java’s private modifier, or allow unlimited external
access, e.g. using Java’s public modifier. There is, however, no built-in way to
provide read and write access in the defining module but only read access in
other modules or to constrain the number of invocations of a given function.

Reusability. The reusability of the modules of a Bossa Nova scheduling policy is
enhanced by the property that a module does not explicitly mention the names of
other modules. In Object-Oriented languages, relationships between classes are
expressed using inheritance, which requires naming the superclass. Traits [27],
CLOS mixins, and Units allow defining modules that are externally combined,
and thus do not mention the names of other modules. Traits, however, does not
allow modules to define local state, and CLOS mixins and Units do not provide
a unique global view.

Aspects. Aspect ordering is a major problem in understanding, verifying, and
reusing aspects defined using traditional approaches. For example, AspectJ relies
on a combination of defaults based on the order in which aspects are declared and
explicit directives [17]. These approaches are fragile, burden the programmer,
and do not take the semantics of the aspects into account. In our approach,
aspect ordering is determined by def-use relationships reflecting the semantics
of the aspects and the needs of the domain.

In summary, while some general-purpose approaches to modularity provide
some of the features that we require for Bossa Nova, none provides either the
domain-specific distinctions between different kinds of values or the fine-grained
control over the use of program entities that we require.

5 Related Work

To illustrate the strategies taken to incorporate advanced language features in
DSLs, we consider some other DSLs that provide module systems.

Some embedded DSLs inherit the module system of the host language. Leijen
and Meijer embed a language for constructing database queries in Haskell [21].
They argue that it is possible to exploit the Haskell module system, but their
use of this module system does not exhibit any domain-specific properties. El-
liot takes a similar approach in a DSL for animation [10]. Other embedded DSLs
provide domain-specific module systems. Verischemelog is a hardware descrip-
tion language embedded in Scheme [16]. As this language targets Verilog users,



it explicitly provides a module system based on that of Verilog, rather than us-
ing that of the host Scheme implementation. Thus, Verilog’s use of modules is
compatible with our approach: language abstractions are designed according to
domain needs rather than relying on what is provided by a host language.

Module systems have also been developed from scratch for DSLs, as we have
done for Bossa Nova. Risla is a compiled DSL for use in banking applications [32].
After several years of use, the abstraction facilities of the language were found to
be insufficient and the language was extended with a module system. The task of
implementing the extension was facilitated by the use of language specification
tools. The nesC DSL for networked embedded systems was designed from the
start around the use of components, implemented using a dedicated module
system [12]. NesC applications have been found to require little new code, instead
relying on a large number of small components, suggesting the appropriateness
of the module system and the overall language design to the targeted domain.

6 Conclusion

In this paper we have presented the Bossa Nova language, which provides mod-
ules and transition aspects for implementing scheduling policies. These forms of
modularity enable substantial code reuse when implementing multiple scheduling
policies within a single family, allow separation of concerns in complex policies,
and separate policy-specific code from OS-specific details. Furthermore, the use
of forms of modularity dedicated to the scheduling domain improves the un-
derstandability and verifiability of scheduling code as compared to the use of
approaches found in general-purpose languages. These observations suggest that
rather than inheriting language features, as done in an embedded language, it is
more fruitful to construct DSL extensions directly, based on an analysis of the
needs of the domain.

We have used the language to extend our library of scheduling policies with
policies from a range of policy families, including both classical policies and
policies developed in recent research. In on-going work, we are adding to the
set of policies and families represented. As a practical example, we are currently
applying Bossa Nova and our library of scheduling policies to the use of a stan-
dard PC as a Personal Video Recorder (PVR).4 A PVR must provide a variety
of video services, such as encoding, decoding, and picture-in-picture. These ser-
vices need to maintain a specific rate, but may have unpredictable computation
requirements. Existing PVR software does not provide any quality of service
guarantees and indeed less is known about how a scheduling policy can provide
such guarantees for processes with unpredictable computation requirements than
for processes with strict computation bounds. The ease of generating new policy
variants and combinations in Bossa Nova can aid in evaluating existing policies
and new variants in this setting.

4 http://www.emn.fr/x-info/bossa/bossabox
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