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Abstract

Writing a new scheduler and integrating it into an exist-
ing OS is a daunting task, requiring the understanding of
multiple low-level kernel mechanisms. Indeed, implement-
ing a new scheduler is outside the expertise of application
programmers, even though they are the ones who under-
stand best the scheduling needs of their applications.

To address these problems, we present the design of
Bossa, a language targeted toward the development of
scheduling policies. Bossa provides high-level abstractions
that are specific to the domain of scheduling. These con-
structs simplify the task of specifying a new scheduling pol-
icy and facilitate the static verification of critical safety
properties.

We illustrate our approach by presenting an implemen-
tation of the EDF scheduling policy. The overhead of Bossa
is acceptable. Overall, we have found that Bossa simplifies
scheduler development to the point that kernel expertise is
not required to add a new scheduler to an existing kernel.

1 Introduction

Process scheduling is an old problem, but there is no
single scheduler that is perfect for all applications. In-
deed, in the last few years, the emergence of new ap-
plications, such as multimedia and real-time applications,
and new execution environments, such as embedded sys-
tems, has given rise to a host of new scheduling algo-
rithms [1, 6, 8, 13, 20, 24, 26, 29, 31, 32, 33, 34]. Never-
theless, because these algorithms are typically highly spe-
cialized, few have been included in commercial operating
systems (OSes).

Ideally, when the scheduling behavior required by an ap-
plication is not available, the application programmer can
implement a new scheduler in the target OS. Nevertheless,
scheduler programming at the kernel level is a difficult task.
First, there is no standard interface for implementing sched-

ulers. Thus, the programmer must identify the parts of the
kernel that should be modified and the code that should be
written in each case. Because scheduling is affected by all
kernel services, this analysis requires a global understand-
ing of the kernel behavior. The analysis is further compli-
cated by the pseudo-parallelism present in the kernel due to
interrupts. Second, few debugging tools are available at the
kernel level. Indeed, any errors in kernel code are likely to
crash the machine, making bugs difficult to track down. To-
gether these issues imply that the kind of expertise required
to successfully integrate a new scheduler into an existing
OS is outside the scope of application programmers.

Our approach We propose a framework, Bossa, to al-
low application programmers to implement kernel sched-
ulers easily and safely. This framework defines a schedul-
ing interface that is instantiated in a standard OS by an OS
expert. Schedulers are written using a domain-specific lan-
guage (DSL) that provides high-level scheduling-specific
abstractions to simplify the programming of scheduling
policies. To enable compile-time verification that a sched-
uler interacts correctly with the target kernel, the OS ex-
pert configures the DSL compiler with a model of the ker-
nel’s scheduling behavior, including information about pro-
cess state transitions and interrupts. Schedulers can either
be compiled with the kernel or dynamically loaded into a
scheduling hierarchy. Because Bossa extends a standard
OS, applications can continue to use a standard execution
environment (drivers, libraries, etc.).

We have implemented Bossa in the Linux 2.4.18 kernel.
In this context, Bossa has been used to implement a variety
of scheduling policies, including policies directed towards
multimedia applications such as progress-based schedul-
ing [31], policies directed towards real-time systems such
as rate monotonic and earliest-deadline first (EDF), and
general-purpose policies such as the policy of Linux. Most
policies amount to under 200 lines of Bossa code and were
implemented in a few hours beyond the time required to
understand the scheduling algorithm. Some of these poli-



cies were implemented by students with no previous kernel
programming experience. Overall, we have found that the
use of Bossa allows the scheduler programmer to focus on
the features of the policy to be implemented rather than on
the details of integrating a new scheduler into an existing
OS. Previous papers have presented the Bossa verification
process [16] and features for implementing a hierarchy of
schedulers [17]. This paper summarizes the compilation
process and assesses the performance of the Bossa frame-
work.

The contributions of this paper are as follows:

• We assess the expressiveness of Bossa in terms of the
number of lines of code required to implement a vari-
ety of multimedia and real-time scheduling policies.

• Using the lat ctx context-switch latency benchmark
of the LMbench benchmark suite,1 we show that the
context-switch overhead introduced by Bossa is ac-
ceptable for any real-sized process.

• We find no observable overhead from the use of Bossa
with a variety of real applications, including the Web
server Apache, which is highly demanding in terms of
context switches.

• We illustrate the value of using an application-specific
scheduling policy in the context of video display. By
using an EDF scheduling policy, the player maintains
the proper frame rate when competing with other de-
manding processes, which it is unable to do when run-
ning under the ordinary Linux scheduling policy.

The rest of this paper is organized as follows. Section 2
examines the difficulties that arise when implementing a
scheduler in an existing OS. Section 3 introduces the Bossa
DSL. Section 4 presents the Bossa compiler and verifier.
Section 5 evaluates the performance of our approach. Sec-
tion 6 illustrates some applications of Bossa. Section 7
presents related work. Section 8 concludes and describes
future work.

2 Analysis of Scheduler Development

To motivate the design of Bossa, we consider the issues
that a programmer, in particular a programmer who is not a
kernel expert, is faced with when implementing a scheduler
in a standard OS kernel, Linux 2.4. We then describe how
Bossa addresses these issues.

2.1 Understanding scheduling in Linux

To structure the implementation of a scheduling policy,
the scheduler programmer must first identify the set of oper-

1http://www.bitmover.com/lmbench/

Lines of code Functions & Macros
Process creation 216 4
Process termination
code executed

by the terminating process 149 3
code executed by the parent 143 2

Blocking 168 3
Unblocking 244 20
Clocktick
interrupt handler 148 7
interrupt bottom half 24 2

Process election 248 9

Figure 1. Dispersal of scheduling-related
code in the Linux 2.4.18 kernel

ations that the policy should provide. These include elect-
ing one of a set of eligible processes and reacting to state
changes that affect the eligibility of processes, such as pro-
cess unblocking and the passage of time. The exact set
of operations depends on the needs of the policy and the
behavior of the kernel. For example, Linux implements
several variants of unblocking. The scheduler programmer
must assess whether the differences between these variants
are relevant to a given policy.

Once the operations have been identified, the scheduler
programmer must determine the point in the kernel code
at which each operation should be invoked. Typically, each
operation defined by the policy should be invoked within the
code implementing the corresponding operation in the ker-
nel. Nevertheless, identifying the exact position and means
of invocation can require substantial kernel expertise. In
many cases, the Linux kernel implementation of a schedul-
ing operation is spread out across many functions, as shown
in Table 1. For example, unblocking in Linux involves a se-
quence of up to 7 macro and function calls in two different
files. In all, the Linux implementation of scheduling-related
operations involves 1340 lines of code, in 50 functions. Be-
cause the operations provided by the scheduling policy may
subsume all or part of the Linux implementation, the sched-
uler programmer must understand the full impact of each
statement in the original code to determine which state-
ments should be modified or removed. Properties of locks
and interrupts may need to be taken into account, which
may require analyzing the entire kernel, not just the parts
related to scheduling.

To be able to implement the various scheduling oper-
ations in a manner consistent with the kernel, the sched-
uler programmer must be aware of the relevant kernel state
when each policy operation is invoked and of the kernel’s
expectations as to the effect of the operation. As an exam-
ple, we consider unblocking. Intuitively, when the policy’s
unblocking code is invoked, the unblocking process should



Bossa reengineered kernel

Bossa Policy
fork() {
. . .

event create process(. . . )
. . .

}

wake up process() {
. . .

event unblock(. . . )
. . .

}

process new
{. . .}

unblock preemptive.*
{. . .}

//

44hhhhhhhhhhh

Figure 2. The Bossa event-based interface

currently be blocked. In Linux, however, the blocking of an
executing process is not an atomic operation, and thus the
treatment of unblocking must take into account the possibil-
ity that the affected process is still executing. Kernel expec-
tations regarding the effect of each policy operation include
properties of process states, flag values, and return values.
For example, the unblocking code must leave the target pro-
cess either executing, if it was executing at the beginning of
the unblock operation, or eligible for election. The return
value of this code must indicate whether a process was ac-
tually unblocked. Fully understanding these constraints re-
quires examining code scattered throughout the kernel, and
may take months of work.

2.2 The Bossa kernel interface

Bossa encapsulates the points of interaction between a
scheduling policy and an OS in an event-based interface,
as illustrated in Figure 2. Because each OS has different
scheduling-related behavior, this interface is specific to the
target OS and is designed by an OS expert (i.e., an expert
in the given OS). This expert identifies the set of relevant
scheduling events and re-engineers the kernel by replacing
scheduling-related code by event notifications. In particular,
the complete implementation of process election is removed
and replaced by the event notification bossa.schedule.
We have developed an automated tool to help the OS expert
in the re-engineering process [22]. The OS expert also cre-
ates a formal model describing the expected behavior of the
scheduler handler for each event. This model is provided
to the scheduler programmer, who uses it to guide the de-
velopment of a scheduler, and to the Bossa compiler, which
checks that a scheduler satisfies OS-specific requirements
and generates code that is compatible with the OS kernel.

The Bossa interface for the Linux kernel contains event
notifications for events such as process creation and termi-
nation, process blocking, unblocking and yielding, and the
need to elect a new process. In all, there are 10 basic events
for which a Bossa scheduling policy must define handlers
for use with this kernel. For events such as blocking, un-
blocking and yielding that are generated by multiple kernel

services, Bossa provides specializations of the basic events
that include information about the identity of the service
that triggered the event. These specialized events are orga-
nized into a hierarchy, allowing an event handler to treat all
instances of an event or only instances generated by a given
source, such as character devices or the network.

3 The Bossa DSL

Programming a scheduling policy requires implementing
and keeping consistent complex operations on processes,
such as managing process states and process priorities. Be-
cause any runtime error can crash the machine, the pro-
grammer must carefully check the policy for errors, includ-
ing both generic errors such as dangling pointers and errors
related to incorrect interaction with the target OS. General-
purpose languages, such as C, provide no support for the
programming of scheduling operations or for the required
error checking. The Bossa framework thus includes a DSL
that allows the programmer to express scheduling policies
in a clear, concise and verifiable way. This language pro-
vides high-level abstractions for defining the various data
structures and operations needed by a scheduling policy.
Bossa provides a verifier that exploits these abstractions to
check a scheduling policy. The Bossa compiler then auto-
matically generates an appropriate implementation.

A Bossa scheduling policy includes a set of declarations
and a set of handlers for kernel scheduling events. We in-
troduce the language using excerpts of an implementation
of an EDF scheduling policy [18], shown in Figure 3, which
illustrates most of the language features. The complete im-
plementation is 162 lines of Bossa code. The complete pol-
icy and a grammar of the Bossa DSL are available at the
Bossa web site.2

Declarations The declarations of a scheduling policy de-
fine the process attributes, the scheduling states, and the or-
dering of processes.

The process declaration lists the policy-specific at-
tributes associated with each process. Those of the EDF
policy are the period and the Worst-Case Execution Time
(WCET) supplied by the process, the process’s current
deadline, and a timer that is used to maintain the period.
Process attributes are used to store information associated
with a process across multiple invocations of the policy and
may be used in the strategy for comparing processes.

The states declaration lists the set of process states
that are distinguished by the policy. A process managed by
the policy is always in exactly one of these states. Each
state is associated with a state class, RUNNING, READY,
BLOCKED, or TERMINATED, describing the schedulability

2http://www.emn.fr/x-info/bossa



scheduler EDF = {
process = {

time period;
time wcet;
time current_deadline;
timer period_timer;

}
states = {

RUNNING running : process;
READY ready : sorted select queue;
READY yield : process;
BLOCKED blocked : queue;
BLOCKED computation_ended : queue;
TERMINATED terminated;

}
ordering_criteria = { lowest current_deadline }

handler (event e) {
On unblock.preemptive.* {

if (e.target in blocked) {
if (!empty(running) && e.target > running) {

running => ready;
}
e.target => ready;

}
}
On bossa.schedule {

if (empty(ready)) { yield => ready; }
select() => running;
if (!empty(yield)) { yield => ready; }

}
...

}
}

Figure 3. Excerpts of an EDF scheduler

of processes in the state. State classes allow the Bossa com-
piler to check that the state changes performed by a schedul-
ing policy reflect the changes in process schedulability re-
sulting from kernel actions. Each state is also associated
with an implementation, either a process variable (pro-
cess) or a queue (queue), which the compiler can some-
times optimize into an array. All operations on states are in-
dependent of the state class and implementation. The com-
piler automatically generates appropriate low-level code.

In the EDF policy, the state running is in the RUN-
NING class, and thus represents the currently running pro-
cess. It is implemented as a process variable, because Bossa
currently targets uniprocessors.3 The states ready and
yield are in the READY state class, meaning that pro-
cesses in these states are able to run. The ready state is
designated as select, meaning that a new process can
only be elected from this state. A process that has vol-
untarily yielded the processor is in the yield state. The
states blocked and computation ended are in the
BLOCKED state class, meaning that processes in these states
are not able to run. A process in the blocked state is wait-

3Extension of Bossa to multiprocessors is in progress.

ing for a resource, while a process in the computation -
ended state has completed its computation for the current
period. Finally, the state terminated is in the TERMIN-
ATED state class, meaning that processes in this state are
terminating. No data structure is associated with this state,
because such processes are no longer relevant to the sched-
uler.

The ordering criteria allows the comparison of
two processes according to a sequence of criteria based on
the values of their attributes. All process comparison opera-
tions are derived from this declaration. Higher or lower val-
ues of an attribute are favored using the keywords high-
est and lowest, respectively. The EDF policy favors the
process with the lowest current deadline. The annotation
sorted in the declaration of the ready state indicates that
the associated queue is sorted according to this criterion.

Event handlers An event handler begins with the name
of one or more handled events. A policy must define a han-
dler for every event, although a wild card * can be used to
specify a single handler for a collection of related events.
The EDF policy defines 11 handlers. Handlers are param-
eterized by an event structure, e, that includes the target
process, e.target, affected by the event, if there is one.

The event-handler syntax is based on that of a subset of
C, to make the language easy to learn. The syntax provides
specific constructs and primitives for manipulating pro-
cesses and their attributes. These include constructs for test-
ing the state of a process (exp in state), testing whether
there is any process in a given state (empty(state)), test-
ing the relative priority of two processes (exp

1
> exp

2
),

and changing the state of a process (exp => state). The
latter operation is the only means of affecting the state of a
process, and both removes the process from its current state
and adds it to the new one, thus ensuring by construction
that every process is always in exactly one state.

The EDF policy defines several event handlers that react
to process state changes. One is the unblock.preemp-
tive.* handler, the first handler in Figure 3, which uses
many of the domain-specific constructs. The handler first
checks whether the target process is blocked. If so, it pre-
empts the running process if the target process has a higher
priority than the running process, as determined by the or-
dering criteria, and changes the state of the target
process to ready, making the process eligible for election.

Process election is performed by the bossa.sche-
dule event handler. The kernel invokes this handler only
when a new process must be elected and there are some eli-
gible processes. The handler must change the state of some
READY process to a state in the RUNNING state class and is
the only handler that is allowed to do so. In the EDF defini-
tion of the bossa.schedule handler, shown in Figure 3,
the main effect is to elect a process from the state designated



as select (ready, in the case of the EDF policy) using
the select() primitive, which is defined in terms of the
ordering criteria. Nevertheless, because the EDF
policy has two READY states, ready and yield, it may
occur that the only READY process is actually in the yi-
eld state. In this case, the handler first changes the state of
the yield process to ready. The policy furthermore im-
plements the strategy that a yielding process only defers to
other eligible processes until the next context switch. Thus,
the handler terminates by changing the state of any process
remaining in the yield state to ready.

The structure of the EDF event handlers is quite sim-
ple, and is typical of that of most of the handlers found in
Bossa policies. This simplicity, combined with the domain-
specific operators and the characterization of process states
by state classes, enables the Bossa DSL compiler to auto-
matically verify that an event handler satisfies the model of
OS-specific requirements provided by the OS expert.

Assessment As compared to a general purpose language,
the Bossa DSL is constrained in some ways to protect
against common fatal errors. Some examples are as follows.
The language forbids storing a reference to a process in a
process attribute or global variable. This protects against
dangling references that can crash the system or cause un-
predictable behavior after a process has terminated. The
language forbids taking the address of any object, to en-
sure that data structures are accessed in a controlled way.
Finally, there are no recursive function calls, and the only
available looping construct is iteration over the process vari-
ables and queues associated with process states. These con-
straints ensure termination. Overall, these constraints are
well adapted to the domain; as illustrated by Figure 3, the
language permits to specify scheduling policies clearly and
concisely.

Bossa supports both the construction of a single process
scheduler, as described above, and the construction of a hi-
erarchy of schedulers. The use of a hierarchy allows mul-
tiple process schedulers, each satisfying particular schedul-
ing needs, to coexist in a running OS. In a Bossa hierarchy,
the root and interior nodes are virtual schedulers, which
only manage other schedulers, and the leaf nodes are pro-
cess schedulers, which only manage processes [17].

4 Compilation

The Bossa DSL compiler serves as a repository of kernel
expertise, making it possible to convert a policy, expressed
in a high-level way that requires little kernel knowledge on
the part of the programmer, into a module that interacts cor-
rectly with the target OS. To address the variation in OS
kernel requirements, the compiler is configured by an ex-
pert in each target OS with a scheduling-specific model of

kernel behavior. When applied to a policy, the compiler first
verifies that the policy is compatible with the model of the
target kernel and then generates the corresponding C code.
The compiled policy can be statically linked with the target
kernel or dynamically loaded into the kernel as a module.

4.1 Modeling kernel behavior

To describe kernel behavior, the model provided by the
OS expert comprises a set of event sequences that describe
the possible sequences of events generated by the kernel and
a set of event types that describe the possible inputs and
corresponding outputs for each event handler.

Event sequences Event sequences describe kernel control
flow. The event sequence information provided by the OS
expert contains a list of system events, which occur during
system calls, and interrupt events, which occur during treat-
ment of an interrupt. The OS expert also provides automata
describing the order of these events within a single system
call or treatment of a single interrupt. A sequence of events
can be declared to be interruptible or uninterruptible, ac-
cording to the context in which it is generated in the kernel.
Based on these automata describing local behavior, the DSL
compiler generates an automaton that reflects the global ker-
nel behavior including all possible interleavings of system
and interrupt events.

Event types Event types describe the required effect of
each event handler on the states of individual processes.
Types are defined in terms of the state classes, RUNNING,
READY, BLOCKED, and TERMINATED, making them in-
dependent of the states defined by any particular policy. An
event type specifies: (i) the presence or absence of processes
in the states associated with a given state class, (ii) the state
classes associated with the states of specific processes, such
as the target process, (iii) the permitted and required move-
ment of processes between the states of various state classes
during the handler, (iv) properties of flag and return values.

The Linux event type for the unblock.preemp-
tive.* event is shown below.

unblock.preemptive.*:
〈tgt ∈ BLOCKED〉 → 〈tgt ∈ READY〉, return true
〈p ∈ RUNNING, tgt ∈ BLOCKED〉 → 〈[p, tgt] ∈ READY〉,

current→need resched = 1, return true
〈tgt ∈ RUNNING〉 → 〈 〉, return false
〈tgt ∈ READY〉 → 〈 〉, return false

The first two type rules describe the allowed behavior when
the target process is blocked. The handler must make the
target process eligible by changing its state to a state in the
READY state class, and may optionally indicate that the run-
ning process should be preempted by changing its state from
the RUNNING state class to a state in the READY state class.



In these cases, the return value to be added by the Bossa
compiler is true, indicating that a process is actually un-
blocked, as expected by the Linux kernel context in which
the unblocking event is generated. The second type rule,
in which the running process is preempted, also indicates
that the need resched flag of the Linux representation
of the running process should be set to 1, as required by the
kernel to request preemption in this context. The remaining
type rules address the case where the event occurs before
the target process has blocked. In this case, the state of the
target process must remain unchanged and the return value
is false, because there is no state change.

The event types can be used not only to check the han-
dlers of a given policy, but also to prove properties about all
policies accepted for a given OS. For example, for Linux,
the event types can be used to show that any valid Bossa
scheduler satisfies liveness, based on the assumption of the
correctness of the underlying kernel and the Bossa event
notifications. The proof is as follows. We first show that
eligible processes are always in a READY state. Processes
become eligible by either entering the scheduler or by un-
blocking. The types for these events require that the target
process be placed in a READY state. The only events be-
sides process election itself that remove a process from a
READY state are those such as blocking that make a pro-
cess ineligible. Given that eligible processes are always in a
READY state, we next consider the type of bossa.sche-
dule. This type requires that some process in a READY
state be elected, if there is any such process. Thus, we are
ensured that if there is any eligible process, then some eli-
gible process will be elected, showing liveness.

4.2 Verification

The verification phase of the DSL compiler checks that a
policy defines a complete set of event handlers, that each of
the handlers respects the corresponding event type, and that
the code implementing each handler is well-defined (i.e.,
will not crash the OS). The heart of the verification is the
checking of event types. The verifier first instantiates each
type rule with respect to the states defined by the policy.
This instantiation uses the event sequences to omit cases
that cannot occur due to the inter-handler control-flow of the
policy. For each instantiated rule, the verifier then simulates
the execution of the corresponding handler with respect to
the rule’s input. The result is checked to be compatible with
the type rules. Information collected during the simulated
evaluation is also used to detect errors such as null-pointer
dereferences.

Of the verifications performed, we have found that the
checking of the event types detects the most errors, as pro-
grammers who are not expert in the target kernel do not, and
indeed are not expected to, understand all kernel scheduling

conventions. The compiler detects these errors before the
policy is deployed in the kernel, at which point errors be-
come time-consuming to track down.

4.3 Translation to C code

The translation phase converts the high-level abstrac-
tions of the Bossa DSL to executable code. For example,
state-change operations are implemented according to the
specific data structures associated with the states involved
and operations involving process priority are replaced by
specialized implementations. The translator also generates
infrastructure code that allows the policy to interact with
user processes via the procfs and ioctl interfaces.

All of these tasks represent programming that is tedious
and error-prone to do by hand. The automatic generation of
code from a high-level specification ensures the consistency
of the implementation as the policy evolves and hides the
need for expertise in areas such as procfs that are kernel-
specific and unrelated to the domain of scheduling.

5 Evaluation

We evaluate Bossa in terms of the expressiveness of the
DSL and in terms of performance. Performance experi-
ments were conducted on a 1600MHz Pentium 4 with an
8 KB L1 data cache, a 12 KB L1 instruction cache, a 256
KB L2 cache, 256 MB of RAM, and one 120 GB 7200 RPM
Western Digital IDE drive with 8 MB of buffering.

Expressiveness of the DSL We are currently using the
Bossa DSL to develop an encyclopedic library of multime-
dia and real-time scheduling policies [15]. Policies in the li-
brary are guaranteed to satisfy the safety properties checked
by the Bossa verifier and are easy to modify to create new
policy variants. Table 1 shows the code size of the Linux
2.4 scheduling policy when implemented in Bossa as well
as that of various real-time and multimedia scheduling poli-
cies. Within a family of scheduling policies, there are sub-
stantial opportunities for code reuse. For example, both the
EDF and RM policies target periodic processes. They share
136 lines of code out of 162 and 154 lines, respectively.

Impact on the context-switch overhead Performing a
context switch involves electing a new process, saving the
register state of the current process, and installing the regis-
ter state of the elected process. The context-switch overhead
also includes the cost of reloading cache and TLB entries as
needed during the subsequent execution of the elected pro-
cess. We measure the cost of these operations using the
lat ctx benchmark from the LMBench 2.0.4 benchmark



Process schedulers Lines of code
The Linux 2.4 scheduling policy 201
Earliest-Deadline First (EDF) 162
Rate Monotonic (RM) 154
Deadline Monotonic 159
Least Laxity First 168
RM + polling server 262
Best [3] 160
BVT [8] 238
Progress-based scheduling [31] 234
Virtual schedulers
Fixed priority 94
Proportional scheduling 102

Table 1. Code size of some Bossa schedulers
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(b) Increase in the context-switch overhead when using Bossa

Figure 4. Comparison of the Bossa implemen-
tation of the Linux policy and the native Linux
scheduler (tests done in single user mode)

suite.4 This benchmark passes a token around a ring of pro-
cesses, triggering a context switch at each step. Each pro-
cess sums the elements in a local array of a given size to
emulate a working set. Varying the size of the array affects
the cache and TLB behavior. Figure 4 compares the perfor-
mance of lat ctx when using the Bossa implementation
of the Linux policy to the performance of lat ctx when
using the standard Linux scheduler. Measures are grouped
first by the array size (0-64KB) and then by the number of
processes (2-96).

When the overall memory usage (product of the num-
ber of processes and the memory usage per process) of
lat ctx is below 64KB, the cost of the scheduling pol-
icy plays a significant role in the context-switch overhead.

4http://www.bitmover.com/lmbench/

Indeed, the use of Bossa increases the overhead by up to
39%, with the worst case being that of 2 processes that ma-
nipulate a 64KB array (Figure 4b). When the overall mem-
ory usage is above 64-128KB, however, the context-switch
overhead increases significantly for both Linux and Bossa.
In these cases, the use of Bossa increases the context-switch
overhead by only 2-5% as compared to Linux (Figure 4b).
While these experiments show some overhead for Bossa,
lat ctx represents a worst case, because its computation
time is dominated by scheduling and because the memory
sizes used are much smaller than those used by real appli-
cations running on a general-purpose system.

Impact on real applications In a real application, the im-
pact of any scheduling overhead is determined by the fre-
quency of context switches. We thus analyze the context-
switch behavior of two widely used applications: the video
player mplayer and the Web server Apache.

A video player has periodic behavior, determined by the
frame rate. Intuitively, in each period, the player initially
blocks to receive the next frame of video data, then per-
forms various computations to decode the frame, and finally
blocks to wait for the beginning of the next period. Playing
the Matrix Reloaded trailer5 using mplayer, we observe
that 60% of its time slices have a duration of under 100 cy-
cles. Nevertheless, 15% of its time slices have a duration
of over 2 million cycles, implying that overall the behavior
of the player is dominated by computation rather than con-
text switching. Thus, any overhead of Bossa should have no
noticeable effect on the overall execution time. Indeed, we
find that the use of Bossa with the Linux scheduling policy
gives the same performance as the original Linux scheduler.

Apache maintains a pool of threads to treat incoming re-
quests. When a request arrives, it is picked up by an avail-
able thread that carries out the processing of the request.
This strategy reduces idle time if blocking is required dur-
ing request processing, but introduces context switches be-
tween the threads treating the different requests. When the
server is flooded with requests, the number of requests that
it can handle is thus limited by the scheduling overhead. For
our HTTP server, we used Apache version 1.3. To generate
HTTP workloads, we used httperf6 [21]. We performed
three tests, each flooding the server with get requests of in-
memory pages of various sizes. As shown by Table 2, when
running under both Linux and Bossa the Web server handles
the same number of requests.

Figure 5 shows that 40-60% of the timeslices of pro-
cesses forked by Apache have a duration of under 100K
cycles. Comparing these results to the context switch time
observed for lat ctx (Figure 4a) suggests that these pro-

5The video size is 10.2 MB, its resolution is 1280 x 1024, and it lasts
151 seconds.

6http://freshmeat.net/projects/httperf, version 0.8.



page size request rate (req/s) bandwidth (MB/s)
Bossa < 5KB 1163 4.876
Linux < 5KB 1165 4.842
Bossa 10–15KB 979 9.434
Linux 10–15KB 1007 9.057
Bossa > 20KB 410 10.128
Linux > 20KB 408 10.174

Table 2. Apache performance

<5K
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Figure 5. Timeslice durations in Apache

cesses spend a lot of time context switching. Because each
of the Apache processes has a resident set of 500-800 KB,
the overall memory used by the Apache processes at any
given time should be in the range where the overhead of
Bossa forms a negligible part of the context switch time, as
indicated by the lat ctx tests (Figure 4b).

6 Playing Bossa

The goal of Bossa is to allow application programmers
to easily develop and deploy schedulers that meet specific
needs. We consider three such uses of Bossa: improving
the scheduling of a video player, isolating a web server, and
teaching real-time scheduling algorithms.

MPEG video display On a lightly loaded system, a video
player can achieve the frame rate required by the video
by sleeping for an appropriate time after processing each
frame. On a heavily loaded system, the player needs to re-
serve a portion of CPU time within a fixed interval, to en-
sure both that it receives adequate access to the CPU and
that it receives this access at the appropriate rate.

We consider the use of the video player mplayer with
a scheduling hierarchy consisting of a Fixed-priority sched-
uler at the root, and the Linux 2.4 scheduler and the EDF
scheduler of Section 3 at the leaves, as illustrated in Figure
6. The Linux 2.4 scheduler has lower priority than the EDF
scheduler. All processes run on the Linux 2.4 scheduler,
except the video player, which runs on the EDF scheduler.
We slightly modified mplayer to dynamically construct
the hierarchy, attach itself to the EDF scheduler, and yield

Fixed priority

vvmmm
m

((PP
PP

Linux EDF

Figure 6. Scheduling hierarchy for mplayer

Min Max
Linux: Player, kernel compilation 0.009 22.683
EDF: Player, kernel compilation 0.017 0.018

Table 3. Distance between mplayer audio and
video

request rate % of
(req/s) Apache Alone

Apache Alone 975 100%
flooding Apache 75% 732 75%
flooding Apache 25% 253 25%
flooding Apache 75%&25% 722/321 75%/32%

Table 4. Apache performance (two servers)

at the end of the processing of each frame. Table 3 shows
the performance of the player using Bossa on the Matrix
Reloaded trailer with and without reservations when com-
peting with Linux kernel compilation. The performance is
measured as the difference in the percentage of the complete
audio and video that has been treated so far. In both cases,
we have given the X process a Linux real-time priority, so
that when the player blocks to allow the video display, the
X process runs immediately, thus reducing its impact as a
performance bottleneck. Under the Linux 2.4 scheduling
policy, the video falls far behind the audio in the presence
of kernel compilation. With EDF, the player maintains cor-
rect synchronization.

Web server isolation The use of a scheduling hierarchy
permits to run multiple web servers in isolation, so that if
one is under attack or flooded, the others still react with
guaranteed performance. We have implemented this ap-
proach using a proportion-based virtual scheduler control-
ling two Linux schedulers each running a different Apache
1.3 server. One is allocated 25% of the CPU, while the other
is allocated 75%. As shown by the second and third lines of
Table 4, when flooding one server, the proportion of pages
it serves matches its CPU allocation. When flooding both
servers simultaneously by two different clients, the 25%
server serves a little bit more than its allocation, resulting
in 107% of the pages served by a single server.

Teaching real-time scheduling Bossa is an ideal tool for
teaching scheduling. In this setting, the main goal is to
provide the student with a realistic and comparative under-
standing of various scheduling algorithms, without discour-



aging him with tedious programming details, reboots, and
kernel debugging. We have used Bossa in teaching at the
undergraduate level. In these courses, we have observed
that the assistance provided by the DSL and the associated
verifications allows students with little or no kernel exper-
tise to implement several classical scheduling policies for
use at the kernel level in a few hours. The student is pre-
sented with a scheduler implemented as a hierarchy with a
proportional scheduler at the root and the Bossa implemen-
tation of the standard Linux scheduler as the only child. To
test a new process scheduler, the student adds it dynamically
under the proportional scheduler, without rebooting the ker-
nel. The proportional scheduler reserves a small amount of
time for the standard Linux scheduler, allowing the student
to test policies while retaining control over the system.

7 Related work

Our work is related both to research on scheduler devel-
opment and to work on improving OS development.

Other work on scheduler development includes that of
Ford and Susarla in which a process can donate its CPU
time to other processes [11], HLS which allows the creation
of scheduling hierarchies [25], Vassal which allows a new
scheduler to be dynamically loaded into the Windows NT
kernel [7], and the S.Ha.R.K. kernel and MaRTE OS which
are OSes specifically designed to facilitate the implementa-
tion of new schedulers [12, 27]. In these approaches, sched-
ulers are implemented using ordinary C code, for which no
scheduling-specific verification is provided. Thus sched-
ulers have to be assumed to be correct, although scheduling
code remains low-level and error-prone.

Recently, there has been much interest in compile-time
error detection in the context of OS code. CCured [23],
Cyclone [14] and Splint [10] check C programs for com-
mon programming errors, such as invalid pointer refer-
ences. These approaches provide little or no support for
checking domain-specific properties. Meta-level Compi-
lation [9] checks properties that can be described as a se-
quence of matching operations, such as locking and un-
locking, and has been applied to OS code. SLAM uses
model checking to check similar properties [2]. These ap-
proaches work well when the programmer follows certain
coding conventions (e.g. using kernel macros to change the
interrupt level rather than using assembly code). A DSL, on
the other hand, restricts the programmer to a limited set of
abstractions, thus enabling more precise verifications.

High-level languages have been used in other systems
projects to facilitate verification and optimization, including
Modula-3 in SPIN [4], OCaml in Ensemble [19], and Stan-
dard ML in FoxNet [5]. As compared to these approaches,
the use of domain-specific tools further targets verification
and optimization to specific domain needs.

8 Conclusion and future work

In this paper, we have presented a complete framework
to facilitate the development of kernel schedulers. Our ap-
proach is based on a DSL that simplifies programming and
allows critical properties to be verified at compile time.

We have demonstrated the expressiveness of our ap-
proach by implementing several well-known scheduling
policies in Bossa. Our initial experience with the Bossa
compiler has shown that it is useful in catching both com-
mon inattention errors and errors related to incorrect under-
standing of the target OS. Since integration of a policy into
the kernel is handled by the compiler and the framework, it
is easy to test new policy variants. The model of schedul-
ing behavior provided by the OS expert presents relevant
information in a concise form, rather than the large num-
ber of functions that must be studied to understand Linux
scheduling behavior from the source code. Thus, scheduler
programming is made accessible to non-kernel experts.

The current design of Bossa has some limitations that we
want to address in the near future.

• We are currently porting Bossa to Windows XP, Linux
2.6, and the real-time OS Chorus. We are also consid-
ering how to extend Bossa to multiprocessors.

• Process execution may be controlled by the availability
of other resources than the CPU, such as the availabil-
ity of disk, network, and energy resources. We plan to
extend Bossa to allow control of these features to be
incorporated in a scheduling policy.

Availability Bossa and all material described in this paper
are available at the Bossa web site:
http://www.emn.fr/x-info/bossa/.
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