
Grammar for BOSSA

December 29, 2004

scheduler ::= [ default ] ([ high res ] | [ low res ]) scheduler id =
{sched decl handlerdef interfacedef functiondef }
| [ default ] ([ high res ] | [ low res ]) virtual scheduler id =
{vsched decl handlerdef interfacedef functiondef }

sched decl ::= (constdef )∗ (typedef )∗ [ processdef ] (fundecl | valdecl)∗ statedef [ orderdef ]
[ admissiondef ] [ tracedef ]

vsched decl ::= (constdef )∗ (typedef )∗ [ schedulerdef ] (fundecl | valdecl)∗ statedef [ orderdef ]
[ admissiondef ] [ tracedef ]

constdef ::= const bossa type expr id = expr ;
typedef ::= (enumdef | rangedef )∗

enumdef ::= type enum name = enum { id (, id)∗ } ;
rangedef ::= type range name = [ expr .. expr ] ;

processdef ::= process = { (process var decl ;)+ }

schedulerdef ::= scheduler = { (process var decl ;)+ }
process var decl ::= type expr id | type expr system id | timer id

fundecl ::= non proc type fn name ( [ parameter types ] ); | void fn name ( [ parameter types ] );
valdecl ::= non proc type id = expr ; | non proc type system id ; | timer id ;

parameter types ::= (type expr | timer) (, (type expr | timer))∗

statedef ::= states = { (class name id [ : storage ] ;)+ }
class name ::= READY | RUNNING | BLOCKED | TERMINATED

storage ::= process | [ state visibility ] scheduler | [ state visibility ] [ queue type ] queue
state visibility ::= public | private

queue type ::= select | select fifo | select lifo

orderdef ::= ordering criteria = { (key crit decls , crit decls | key crit decls | crit decls) }
key crit decls ::= key crit decl (, key crit decl)∗

crit decls ::= crit decl (, crit decl)∗

crit decl ::= critop id | critop ( expr ? expr : expr )
critop ::= lowest | highest

admissiondef ::= admit = { (valdef )∗ adm crit [ attach detach ] }
valdef ::= type expr id = expr ;

adm crit ::= admission criteria ( [ param var decl (, param var decl)∗ ] ) = { expr }
param var decl ::= type expr id
attach detach ::= admission attach proc param = seq stmt admission detach proc param = seq stmt

proc param ::= ( (process | scheduler) id )

1



tracedef ::= trace integer { [ trace events ] [ trace exprs ] [ trace test ] }
trace events ::= events = { event name (, event name)∗ };
trace exprs ::= expressions = { id (, id)∗ };

trace test ::= test = { expr };

handlerdef ::= handler (event id ) { (On event name (, event name)∗ seq stmt)+ }

interfacedef ::= interface = { (type or void id ( [ param var decl (, param var decl)∗ ] ) seq stmt)+ }

functiondef ::= function = { (type or void fn name ( [ param var decl (, param var decl)∗ ] ) seq stmt)+ }

bossa type expr ::= int | bool | time | cycles | port | process | scheduler | enum name | range name
type expr ::= bossa type expr | system struct id

type or void ::= type expr | void
non proc type ::= int | bool | time | cycles | port | enum name | range name | system struct id

stmt ::= if stmt | for stmt | return stmt | switch stmt | seq stmt | assign stmt | move stmt
| defer stmt | prim stmt | error stmt | break stmt

if stmt ::= if ( expr ) seq stmt [ else seq stmt ]
for stmt ::= foreach ( id [ in class state (, class state)∗ ] ) seq stmt

| foreachIncreasing ( id in state ) seq stmt
| foreachDecreasing ( id in state ) seq stmt

class state ::= state | class name
return stmt ::= return [ expr ] ;
switch stmt ::= switch loc expr in { (case class state (, class state)∗ : seq stmt)∗ }

seq stmt ::= { (valdef )∗ (stmt)∗ }
assign stmt ::= loc expr assign unop | loc expr assign binop expr
assign unop ::= ++ | --
assign binop ::= = | += | -= | *= | /= | %= | &= | |= | <<= | >>=

move stmt ::= move expr => state ref [ .head | .tail ] ;
| move expr => forwardImmediate() [ .head | .tail ] ;

defer stmt ::= defer();
prim stmt ::= fn name ( [ expr (, expr)∗ ] );
error stmt ::= error( string );
break stmt ::= break;

expr ::= integer | id | state | true | false | unop expr | * expr | expr . id | select()
| fn name ( [ expr (, expr)∗ ] ) | empty( class state ) | srcOnSched()
| schedulerOf( expr ) | expr binop expr | expr in class state | ( expr )

unop ::= + | - | ! | ~
binop ::= + | - | * | / | % | && | || | & | | | == | != | < | > | <= | >= | << | >>

loc expr ::= (id | state name) (. id)∗

move expr ::= select() | state name | id | id . source | id . target

Operator precedence is as follows:

{,} < {=, +=, -=, *=, /=, %=, &=, |=, <<=, >>=} < {||} < {&&} < {|} < {&} < {==, !=} < {<, >, <=, >=}
< {<<, >>} < {+, -} < {*, /, %} < {!, ~, ++, --} < {.}

The associativity of the binary operators is as follows:

• Left associative: {,, ||, &&, |, &, ==, !=, <, >, <=, >=, <<, >>, +, -, *, /, %, .}

• Right associative: {!, ~}

2



These definitions are based on the rules of C, and simplified according to the needs of Bossa. In particular,
there is no associativity specified for the various assignment operators, because an assignment is not an
expression in Bossa.

Primitives

The following primitive time functions are defined for both the version of Bossa with high-resolution timers
and for the Bossa without high-resolution timers:

• now() : unit -> time
The current time.

• start relative timer(timer,offset) : timer * time -> unit
Set a timer for offset time units in the future.

• start absolute timer(timer,time) : timer * time -> unit
Set a timer for the time time.

• stop timer(timer) : timer -> unit
Stop a timer.

• time to ticks(t) : time -> int
Convert a time to a number of ticks (on Bossa with high-resolution timers, this is equivalent to
time to jiffies, but is included for portability).

• ticks to time(n) : int -> time
Convert a number of ticks to a time.

The following primitive time functions are only defined for the version of Bossa with high-resolution
timers:

• make time(sec,nsec) : int * int -> time
Convert a pair of a number of seconds and a number of nanoseconds to the corresponding time.

• make cycle time(jiffies,cycles) : int * cycles -> time
Convert a pair of a number of jiffies and a number of cycles to the corresponding time.

• make cycles(n) : int -> cycles
Cast an integer to a number of cycles.

• time to jiffies(t) : time -> int
Drop the subjiffies component of a time.

• time to subjiffies(t) : time -> cycles
Drop the jiffies component of a time.

The following primitive time functions are planned, but are unfortunately not currently implemented:

• time to seconds(t) : time -> int
Drop the nanoseconds component of a time.

• time to nanoseconds(t) : time -> int
Drop the seconds component of a time.

Other miscellaneous primitive functions are as follows:

• print trace info() : void -> void
Print the accumulated trace information. Only defined if tracing is defined.

• get user int(t) : port -> int
Get an integer value from a user-level address.

3


